中国海光

第10卷 第12期

稀土元素对 KNdP₄O₁₂ 激光晶体的影响

洪广言 刘跃森*

(中国科学院长春应用化学研究所)

提要:用蒸发溶液法从磷酸溶液中生长出14种KNdo.9Lno.1P4O12晶体(其中Ln=La、Ce、Pr、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu或Y)。测定了它们的晶体结构、红外光谱、吸收光谱、荧光光谱和荧光寿命,计算了晶格常数,观察到掺入Ln³⁺后对KNdP4O12晶体的影响。

Effects of rare-earth elements on KNdP₄O₁₂ laser crystals

Hong Guangyan, Liu Yuesen

(Changchun Institute of Applied Chemistry, Academia Sinica)

Abstract: $\text{KNd}_{0.9}\text{Ln}_{0.1}\text{P}_4\text{O}_{12}$ crystals (Ln=La, Ce, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu or Y) have been grown by evaporation solution method. Their X-ray diffraction patterns, infrared, absorption, fluorescent spectra and fluorescent lifetime have been measured. The effects of Ln³⁺ on KNdP₄O₁₂ have been observed.

我们曾研究了采用蒸发溶液法生长 KNdP₄O₁₂晶体的工艺条件。但到目前为 止,系统地讨论其它稀土离子对KNdP₄O₁₂ 晶体的影响尚未见报导。本文从探索新材料 和改善KNdP₄O₁₂晶体的性能出发,生长了 14种KNd_{0.9}Ln_{0.1}P₄O₁₂(其中Ln代表稀土 元素)晶体,测定了它们的结构与光谱,得到 一些有趣的结果。

实验部分

KNd_{0.9}Ln_{0.1}P₄O₁₂晶体的生长是在图1 所示的装置中进行的,采用DWT-702精密 温度控制仪控温。生长工艺参见文献[1]。 所得晶体均为矩形或六角长条块状,均呈粉 红色。

所得 KNdP₄O₁₂ 晶体用化学分析测定了

图1 晶体生长装置示意图

收稿日期: 1982 年 11 月 22 日 * 系长春光机学院毕业生。 磷和钕的含量,用原子吸收法测定了钾的含量,分别为 K=8.5%, P=23.5%和 Nd= 27.8%,与计算值相符。用萃取色谱 分离的方法测定了 KNd_xLa_{1-x}P₄O₁₂和 KNd_xY_{1-x}P₄O₁₂晶体中钕和镧、钕和钇的 克分子比,结果为 KNd_{0.90}La_{0.10}P₄O₁₂和 KNd_{0.90}Y_{0.10}P₄O₁₂。这结果说明所需引入 的稀土离子按所要求的克分子比进入晶格。

晶体的 X 射线粉末衍射图用 日本理学 2028 X 射线衍射仪测定。晶体的红外光谱 用 SP-1050 红外分光光度计测定。晶体的吸 收光谱是在 Specord UV VIS 型分光光度计 上测得。晶体的荧光光谱是用 日本 MPF-4 型荧光分光光度计和自装自荧光光谱仪上测 得。荧光寿命用荧光衰减法测定。

实验结果与讨论

1. X射线结构分析

文献[2]测定了 KNdP₄O₁₂ 晶体 的详 细 结构。文献[1]报导了 KNdP₄O₁₂ 的 X 射线 粉末衍射图,我们在相同的条件下测定了 KNdP₄O₁₂和 KNd_{0.9}Ln_{0.1}P₄O₁₂晶体的X射 线粉末衍射图(见图2)。所得结果表明, KNdP₄O₁₂和所有的 KNd_{0.9}Ln_{0.1}P₄O₁₂晶体 的 X 射线衍射图均基本吻合,仅峰值位置稍 有偏移。这表明它们均属于单斜晶系,空间 群为 P2₁。也说明引入少量其他稀土离子后 对 KNdP₄O₁₂晶体结构并不引起明显的变 化。为此可以根据单斜晶系的面间距公式:

$$D_{hkl}^{-2} = \left(\frac{h}{a\sin\beta}\right)^2 + \left(\frac{k}{b}\right)^2 + \left(\frac{l}{c\sin\beta}\right)^2 + \frac{2hl\cos\beta}{ac\sin^2\beta}$$

计算出所生长的 KNd_{0.9}Ln_{0.1}P₄O₁₂ 晶体的 晶胞参数。由于这一计算比较繁杂,我们编 制了一个 BASIC 程序,对每一个样品解出 495 组 *a*、*b*、*c* 和 β,然后取平均值。所得结果 列于表 1。从表 1 可见在 KNdP₄O₁₂ 中引入

图 2 部分 KNd_{0.9}Ln_{0.1}P₄O₁₂ 的 X 射线粉末衍射图

表1 KNd_{0.9}Ln_{0.1}P₄C₁₉晶体的晶胞参数

$KNd_{0.9}Ln_{0.1}P_4O_{12}$	a(Å)	b(Å)	c(Å)	β(°)
KNd _{0.9} La _{0.1} P ₄ O ₁₂	7.28	8.47	7.99	91.84
KNd _{0.9} Ce _{0.1} P ₄ O ₁₂	7.23	8.42	7.94	91.75
$KNd_{0.9}Pr_{0.1}P_4O_{12}$	7.24	8.47	7.95	92.15
KNdP4O12	7.26	8.47	7.96	91.74
$KNd_{0.9}Sm_{0.1}P_4O_{12}$	7.27	8.49	7.97	92.20
$\mathrm{KNd}_{0.9}\mathrm{Eu}_{0.1}\mathrm{P}_{4}\mathrm{O}_{12}$	7.27	8.45	7.95	91.66
$\mathrm{KNd}_{0.9}\mathrm{Gd}_{0.1}\mathrm{P}_4\mathrm{O}_{12}$	7.26	8.44	7.94	91.99
$\mathrm{KNd}_{0.9}\mathrm{Tb}_{0.1}\mathrm{P}_4\mathrm{O}_{12}$	7.23	8.42	7.94	91.89
KNd _{0.9} Dy _{0.1} P ₄ O ₁₂	7.23	8.39	7.94	92.29
KNd _{0.9} Ho _{0.1} P ₄ O ₁₂	7.25	8.43	7.96	91.78
$KNd_{0.9}Er_{0.1}P_4O_{12}$	7.24	8.40	7.95	91.96
$KNd_{0.9}Tm_{0.1}P_4O_{12}$	7.24	8.39	7.95	91.98
$\mathrm{KNd}_{0.9}\mathrm{Yb}_{0.1}\mathrm{P}_{4\mathrm{O}{12}}$	7.27	8.42	7.90	91.89
$KNd_{0.9}Lu_{0.1}P_4O_{12}$	7.24	8.42	7.96	91.84
$KNd_{0.9}Y_{0.1}P_4O_{12}$	7.26	8.43	7.96	91.86

少量其他稀土离子对晶胞参数无显著影响。

2. 红外吸收光谱

用 KBr 压片法测定了 KNdP₄O₁₂ 和 KNd_{0.9}Ln_{0.1}P₄O₁₂ 晶体粉末的红外光谱, 部 分结果列于图 3。从图可见, 所有的晶体在 900~1400 厘米⁻¹之间均出现 P—O 键的特 征吸收,并且它们的波形和峰值位置均相同, 这说明这些晶体具有相同的晶体结构类型。

图 3 部分 KNd_{0.9}Ln_{0.1}P₄O₁₂ 晶体的红外光谱

引入少量其他稀土离子后对 KNdP₄O₁2 晶体结构并无明显影响,所生长的 KNd_{0.9}Ln_{0.1}P₄O₁₂ 晶体与 KNdP₄O₁₂ 同属于 单斜晶体系,空间群为 PZ₁。

3. 紫外可见吸收光谱

选择光学质量好的 KNd_{0.9}La_{0.1}P₄O₁₂ 晶 体测定了它的紫外可见吸收光谱,结果列于 图 4。从图 4 可见掺入 La³⁺ 对晶体中 Nd³⁺ 的 吸收峰位置没有影响。与 Nd³⁺ 在其他基质 中相同主要吸收峰位于 3500 Å、5800 Å 和 7900 Å 附近,这给选择光泵提供依据。

4. 荧光寿命

我们测定了不同稀土离子掺杂的 KNd_{0.9}Ln_{0.1}P₄O₁₂晶体中Nd³⁺的⁴F_{3/2} → ⁴I_{11/2} 跃迁的荧光寿命,所得结果列于图5。 当加入的稀土离子为Ce³⁺、Gd³⁺、Lu³⁺和 Y³⁺时,使KNdP₄O₁₂的荧光寿命有所增加,

当加入其他稀土离子,如 Pr^{3+} 、 Sm^{3+} 、 Eu^{3+} 、 Tb^{3+} 、 Dy^{3+} 、 Ho^{3+} 、 Er^{3+} 、 Tm^{3+} 和 Yb^{3+} 都 使 Nd^{3+} 的荧光寿命有不同程度的影响,其中 Pr^{3+} 、 Sm^{3+} 和 Dy^{3+} 的加入使 Nd^{3+} 的荧光 寿命严重猝灭。这将告诉我们,在生长晶体 时要注意 Nd_2O_3 的纯度。与文献 [3]中 $Nd_sLn_{1-s}P_5O_{14}$ 晶体的荧光寿命相比较(详见 表 2),在 $KNdP_4O_{12}$ 中引入 Pr^{3+} 、 Sm^{3+} 和 Dy^{3+} 后对荧光寿命的影响大于这些离子对 NdP_5O_{14} 晶体的影响。这可能与 NdP_5O_{14} 晶 体的对称性比 $KNdP_4O_{12}$ 晶体的高有关。

值得注意的是在 KNdP4O12 晶体中引入

衣 ² II ^o 、Sm ^o 、和 Dy ^o 、对 KN aI ₄ U ₁₂ 和 N aI ₅ U ₁₄ 灭元寿印日	内影]景
--	-----------	----

$\mathrm{KNd_{0.9}Ln_{0.1}P_4O_{12}}$			${ m Nd}_x { m Ln}_{1-x} { m P}_5 { m O}_{14}{}^{[8]}$			
组	成	寿命(微秒)	寿命比	组成	寿命(微秒)	寿命比
KNdP4O12	A. 46.36	100	deobrad.	NdP ₅ O ₁₄	115	P. T. Diele
KNd _{0.9} Pr _{0.1} P	4O12	24	0.24	$Nd_{0.5}Pr_{0.5}P_5O_{14}$	56	0.49
KNd0.9Sm0.1P	4O12	25	0.25	$Nd_{0.5}Sm_{0.5}P_5O_{14}$	80	0.70
KNd _{0.9} Dy _{0.1} P	4O12	23	0.23	$Nd_{0.1}Dy_{0.9}P_5O_{14}$	52	0.45

(下转第825页)

反 x 方向的分量^[11],使电子向 x 方向(下游)加速,但 最终折向阳极。

根据 Schottky 理论^[2],在 *x* 方向,电子损耗由 放电区上游和下游的电子浓度差而导致的双极扩散 引起,而电子增加由快速电子和气体分子碰撞电离 产生。在稳态情况下,二者必须平衡。设放电载面 为 *S*(*yz* 平面),在单位时间内,进入 *Sdx* 体积元之内 的电子数为:

$$N_1 = n_e(x) v_a(x) S \tag{14}$$

这里 $n_e(x)$ 为 x 点的电子密度, $v_a(x)$ 为双极扩散速度, ∂_a 为双极扩散系数, 则:

$$v_a(x) = -D_a \frac{1}{n_e(x)} \frac{dn_e(x)}{dx}$$

同理,离开此体积元的电子数为:

$$N_2 = n_e(x + dx)v_a(x + dx)S \tag{15}$$

对体积元 Sdx 而言,由于扩散而减少的电子数为 $(N_2 - N_1)$,

$$N_2 - N_1 = -SD_a \left(\frac{dn_e(x+dx)}{dx} - \frac{dn_e(x)}{dx} \right)$$
(16)

设电离系数为 a,则在同样体积元内,碰撞电离生成 的电子数为:

 $N_3 = a n_e(x) S dx \tag{17}$

由(16)、(17)式可得:

$$\frac{d^2 n_e(x)}{dx^2} + \frac{\alpha}{D_a} n_e(x) = 0 \tag{18}$$

要满足上述边界条件

$$\frac{n_e(l)}{n_0}\approx 0,$$

(上接第828页)

图 6 KNd_{0.9}Ln_{0.1}P₄O₁₂ 晶体中 Nd³⁺ 的荧光光谱 少量 La³⁺ 后却使晶体的荧光寿命有所下降, 这与在 NdP₅O₁₄ 中引入少量 La³⁺ 不同。

5. 荧光光谱

我们选择如下特解[2]:

$$n_e(x) = n_0 \cos \frac{\pi}{2l} x \tag{19}$$

如同计算圆柱形放电管的电子密度分布时, $n_e(r)$ 与 扩散系数 D_a 和电离系数 α 无关一样,在横流放电 CO₂ 激光器中, $n_e(x)$ 的分布也与 D_a 和 α 无关。

参考文献

- [1] "High-Power Gas Lasers 1975", Edited by E. R. Pike, p. 6, p. 35.
- [2] A. Von. Engel; "Ionized Gases", p. 139, p. 241.
- [3] "Gas-Flow and Chemical Laser", Edited by John F. Wendt, p. 140.
- [4] S. A. Wutzke et al.; AD-A014, 649.
- [5] J. W. Davia; AIAA Paper, No. 72~722.
- [6] "High Energy Laser and Their Applications", Under the Direction of Abraham Hertzberg, p. 181.
- [7] 秋业稔光ほか;《レーサー研究》, 1976, 4, No 3, 242.
- [8] Stephen Jacobs et al.; "High Energy Lasers and Their Applications", p. 253.
- [9] Kenneth Smith, R. M. Thomson; "Computor Modeling of Gas Lasers", p. 30.
- [10] "Principles of Laser Plasmas", Edited by G. Bekefi, p. 350.
- [11] С. С. Воронцов и др.; ЖТФ, 1977, 47, № 11, 2287.
- [12] 王哲恩等;《激光》, 1980, 7, No. 7, 1.

在室温下测定了 KNdP₄O₁₂ 和部分 KNd_{0.9}Ln_{0.1}P₄O₁₂ 晶体中 Nd³⁺的⁴ $F_{3/2}$ → $I^{4}_{11/2}$ 和⁴ $F_{3/2}$ →⁴ $I_{9/2}$ 跃迁的荧光光谱。一些 典型的结果示于图 6。由图 6 可见,各样品 中 Nd³⁺的荧光光谱峰值位置相同,但引起 荧光强度发生明显变化。

孙长英、王庆元、卢洪德、陈明玉、刘书 珍、李茂阳、何静贞、越淑英等同志为本文做 了不少工作,特此致谢。

参考文献

- [1] 洪广言等; 蒸发溶液法生长 KNdP4O12 晶体, «应化 集刊», 1983年, 第二十集, 14页。
- [2] H. Y-P Hong; Mat. Res. Bull., 1975, 10, 1105.
- [3] 于亚勤等;《应化集刊》, 1981, 第十七集, 103页。

· 825 ·